Ciliary neurotrophic factor and interleukin-6 differentially activate microglia.

نویسندگان

  • J Kyle Krady
  • Hsiao-Wen Lin
  • Christina M Liberto
  • Anirban Basu
  • Sergey G Kremlev
  • Steven W Levison
چکیده

Studies have shown that cytokines released following CNS injury can affect the supportive or cytotoxic functions of microglia. Interleukin-6 (IL-6)-family cytokines are among the injury factors released. To understand how microglia respond to IL-6 family cytokines, we examined the effects of ciliary neurotrophic factor (CNTF) and IL-6 on primary cultures of rat microglia. To assess the functional state of the cells, we assayed the expression of tumor necrosis factor-alpha (TNFalpha), interleukin-1beta (IL-1beta), and cyclooxygenase 2 (COX-2) following stimulation. We show that CNTF reduces COX-2 levels, whereas IL-6 increases the expression of IL-1beta, TNFalpha, and Cox-2. We also examined trophic factor expression and found that CNTF enhances glial cell-line derived neurotrophic factor (GDNF) mRNA and protein secretion, whereas IL-6 has no effect. Correspondingly, conditioned media from CNTF-stimulated microglia promote motor neuron survival threefold beyond controls, whereas IL-6-stimulated microglia decrease neuronal survival twofold. To understand better the signaling mechanisms responsible for the opposite responses of these IL-6-family cytokines, we examined STAT-3 and ERK phosphorylation in CNTF- and IL-6-stimulated microglia. IL-6 markedly increases STAT-3 and ERK phosphorylation after 20 min of treatment, whereas these signal transducers are weakly stimulated by CNTF across a range of doses. We conclude that CNTF modifies microglial activation to support neuronal survival and that IL-6 enhances their capacity to do harm, as a result of different modes of intracellular signaling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microglia-Müller glia cell interactions control neurotrophic factor production during light-induced retinal degeneration.

Activation of microglia commonly occurs in response to a wide variety of pathological stimuli including trauma, axotomy, ischemia, and degeneration in the CNS. In the retina, prolonged or high-intensity exposure to visible light leads to photoreceptor cell apoptosis. In such a light-reared retina, we found that activated microglia invade the degenerating photoreceptor layer and alter expression...

متن کامل

The trophic effect of ciliary neurotrophic factor on injured masseter muscle in rat

Objective(s): Occlusal trauma is one of the most common forms of oral biting dysfunction. Long-term occlusal trauma could weaken the stomatognathic system; especially damage one’s masticatory muscle. Through using the rat model, this study investigated the trophic effect of ciliary neurotrophic factor (CNTF) on injured masseter muscle. Materials and Methods: Male Wistar rats (n=36) were random...

متن کامل

Association of p72 tyrosine kinase with Stat factors and its activation by interleukin-3, interleukin-6, and granulocyte colony-stimulating factor.

Hematopoietic cytokines, including interleukin-3 (IL-3), IL-6, and granulocyte colony-stimulating factor (G-CSF), induce the proliferation, differentiation, and activation of hematopoietic lineage cells. These cytokines activate the Jak/Stat-mediated signal transduction pathway that is important in the biologic activities of these cytokines. In this study, we showed that hematopoietic cytokines...

متن کامل

Ciliary neurotrophic factor inhibits differentiation of photoreceptor-like cells in rat pineal glands in vitro.

Ciliary neurotrophic factor (CNTF) is a unique member of the interleukin-6 (IL-6) family, whose receptor subunit for ligand binding is exclusively expressed in the nervous system and muscle. The role of CNTF in mammalian development remains unknown. We recently reported the specific expression of CNTF in the pineal gland and eyes. To further examine the expression pattern and role of CNTF in de...

متن کامل

Leukemia inhibitory factor and ciliary neurotrophic factor cause dendritic retraction in cultured rat sympathetic neurons.

Dendritic retraction occurs in many regions of the developing brain and also after neural injury. However, the molecules that regulate this important regressive process remain largely unknown. Our data indicate that leukemia inhibitory factor (LIF) and ciliary neurotrophic factor (CNTF) cause sympathetic neurons to retract their dendrites in vitro, ultimately leading to an approximately 80% red...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neuroscience research

دوره 86 7  شماره 

صفحات  -

تاریخ انتشار 2008